

Milton Keynes Borough Council

FWMA SECTION 19 REPORT

Flood Event: May 2018

Milton Keynes Borough Council

FWMA SECTION 19 REPORT

Flood Event: May 2018

TYPE OF DOCUMENT (VERSION) PUBLIC

PROJECT NO. 70048076

OUR REF. NO. S19-2018-05

DATE: OCTOBER 2018

Milton Keynes Borough Council

FWMA SECTION 19 REPORT

Flood Event: May 2018

WSP

Mountbatten House Basing View Basingstoke, Hampshire RG21 4HJ

Phone: +44 1256 318 800 Fax: +44 1256 318 700

WSP.com

QUALITY CONTROL

Issue/revision	First issue	Revision 1	Revision 2	Revision 3
Remarks	Draft for Client Input	Version 1 for Stakeholder Comments	Version 2 Following Stakeholder Comments	Version 3 Following Stakeholder Comments
Date	13-06-2018	31-07-2018	18-10-2018	07-12-2018
Prepared by	S. Brown	S. Brown	S. Brown	S. Brown
Signature				
Checked by		G. Hoad	G. Hoad	G. Hoad
Signature				
Authorised by		B. Venturini	B. Venturini	B. Venturini
Signature				
Project number	70048076	'	'	1
Report number	S19-2018-05			
File reference			xx\70048076 - MKC S19 May 20 ² 1 3\48076-S19-2018-05 Version 3	

CONTENTS

2.	NON-TECHNICAL SUMMARY	1
	Routine Maintenance	2
	Following a Flood Warning	2
	During a Flood Event	2
	Following a Flood Event	2
3.	INTRODUCTION	3
3.1.	BACKGROUND	3
3.2.	SITE VISIT	6
3.3.	LIMITATIONS	6
4.	ROLES & RESPONSIBILITIES	7
4.1.	MILTON KEYNES COUNCIL	7
4.2.	ENVIRONMENT AGENCY	7
4.3.	ANGLIAN WATER	7
4.4.	RIPARIAN LANDOWNERS	8
4.5.	PROPERTY OWNERS	8
5 .	DRAINAGE STANDARDS	9
5.1.	INTRODUCTION	9
5.2.	BRITISH STANDARDS	9
5.3.	DESIGN MANUAL FOR ROADS AND BRIDGES	9
5.4.	SEWERS FOR ADOPTION	9
6.	CONTEXT & SETTING	10
6.1.	BACKGROUND	10
6.2.	TOPOGRAPHY	10

Project No.: 70048076 | Our Ref No.: S19-2018-05 Milton Keynes Borough Council

6.3.	GEOLOGY	10
6.4.	ENVIRONMENT AGENCY FLOOD RISK FROM RIVERS	10
6.5.	ENVIRONMENT AGENCY FLOOD MAP FOR SURFACE WATER	10
7.	RECORDED FLOOD INCIDENTS	11
7.1.	OVERVIEW	11
7.2.	COFFEE HALL	11
7.3.	OLDBROOK	15
	OLDBROOK EAST	15
	BURST PIPE	19
7.4.	HOSPITAL	20
7.5.	NETHERFIELD	21
7.6.	WINTERHILL	23
7.7.	GENERAL OBSERVATIONS	23
8.	RAINFALL ANALYSIS	25
9.	CONSULTATION WITH RISK MANAGEMENT AGENCY'S	27
9.1.	MILTON KEYNES COUNCIL - HIGHWAYS	27
9.2.	ANGLIAN WATER	27
	ANGLIAN WATER POST EVENT ACTIONS	28
10.	RECOMMENDATIONS	30
10.1.	MAIN FINDINGS	30
10.2.	RECOMMENDATIONS	30
	GLOSSARY	32

TABLES

Table 1 - Distribution of Flood Incidents (reported to the Emergency Planning Team)

5

Milton Keynes Borough Council

Table 2 – FEH 2013 Rainfall Parameters	
Table 3 – Data Provided by Meniscus	
FIGURES	
Figure 1 – Typical Road Layout	12
Figure 2 – Indicator of Water Daniels Welch	12
Figure 3 – Indicator of Water Ingress to Properties	13
Figure 4 – Observed Flooding Indicator groupings	14
Figure 5 – Oldbrook flood flow route, flood map for surface water and LiDAR	16
Figure 6 – Evidence of Siltation near to Highway Embankment	16
Figure 7 – Indicators of Flooding Larwood Place	17
Figure 8 – Oldbrook Indicators of Flooding	17
Figure 9 – Indicators of Flooding Shackleton Place	18
Figure 10 – Damage caused by surface water burst pipe	19
Figure 11 –Burst Pipe Location and Local Topography	20
Figure 12 – Hospital flood flow route, flood map for surface water and LiDAR	20
Figure 13 – Netherfield, flood map for surface water and LiDAR	22

23

24

Figure 14 – Pipe Burst Cairngorm Gate

Figure 15 – Road Gully covered in leaf litter and detritus, and uncovered

Figure 16 – Anglian Water Incident Attendance (2016 to 2018) 28

APPENDICES

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05 Milton Keynes **Borough Council**

EXECUTIVE SUMMARY

This report sets out the preliminary findings following the 27 May 2018 flood event that occurred within a number of areas of Milton Keynes.

Following the flood event WSP were approached by Milton Keynes Council, to provide technical support, which has consisted of:

- Undertaking an inspection of published flood mapping
- Support during selected site inspections of the flood extents
- Initial appraisal of the storm event, based on available data
- Production of this Flood and Water Management, 2010 (FWMA) Section 19 Flood Investigation Report

MAIN FINDINGS

- 1.1.1. This FWMA Section 19 report has considered the evidence presented, and based on this evidence, the flood event can be summarised as follows:
 - The flooding that occurred was due to a very intense summer storm, with indications that this was in excess of a 1% Annual Probability Event, with a rainfall depth of up to 90 mm.
 - The Environment Agency's Flood Map for Surface Water, provides a reasonable representation of the flooding that occurred, with the indicators of flooding occurring within the risk areas, supporting the assumption that the flooding was the result of a significant rainfall event.
 - Significant evidence of flooding was observed in the reported areas, including additional properties which, at the time of site inspection, had not notified Milton Keynes Council that they had flooded.
 - Reported internal property flooding affected at least 315 houses, the Hospital and a number of business premises.
 - Property flooding has tended to occur where the property door thresholds are perpendicular to the local flow routes i.e. the property acts as a barrier to flow, causing the water level to rise sufficiently to exceed the door threshold of the property causing internal flooding. Some evidence of water rising-up through the floor has also been noted.
 - Property flooding has also occurred where the driveway between the property and the highway falls towards the property, this is especially true where there is limited, or no kerb height.
 - Debris was observed on gully inlets, indicating that the storm event is likely to have mobilised a significant volume of leaf litter and other detritus. It is unclear if this occurred, before, during or

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05

after the event. This may have restricted the functioning capacity of the gullies. On clearing the gully grates, the internal gully was observed to be clear.

 Evidence of sewer surcharging, causing damage to the overlying pavement has been observed, indicating that significant volumes of water were present within the sewer system.

It is concluded that the flooding experienced in Milton Keynes was the result of heavy rainfall, overwhelming the capacity of the drainage network, resulting in surface water flows gravitating towards low points in the local topography causing internal flooding to over 315 residential properties.

2. NON-TECHNICAL SUMMARY

Question	Answer
What is the purpose of this Report?	Section 19 of the F&WMA states that on becoming aware of a flood which meets certain pre-determined criteria, the LLFA must undertake a formal flood investigation in order to determine the relevant flood risk management authorities involved and which flood risk management functions have been, or should be taken to mitigate future flood risk. Where an authority carries out an investigation it must publish the results.
	This report has been prepared to satisfy the requirements of Section 19 of the FWMA.
What has been done?	Milton Keynes Council in partnership with WSP, has undertaken a number of site reviews in areas where residents who have reported flooding.
	The flood risk maps, published online by the Environment Agency, have been reviewed to understand if the flooding occurred in areas identified as at risk of flooding.
	Mapping of the sewer infrastructure in the area has also been reviewed.
	Calculations have been undertaken to determine how rare the rainfall event was likely to have been, that caused the flooding. These calculations have been based on rainfall data captured by the Environment Agency rainfall gauges.
What has been established?	Witness accounts identified that the instances of flooding that occurred were as a result of surface water, i.e. rainfall that couldn't enter local drainage systems.
	The event occurred so quickly and deposited such a relatively small volume of rainfall across river catchments that fluvial flooding was not a factor in the reported flooding.
	As the flood instances were related to surface water run-off the Environment Agency has no responsibility or capacity to provide warnings of surface water flooding, they deal with flooding from Main Rivers and the sea only.
	The properties that experienced flooding during this event are not all identified to be in areas previously believed to be at risk of flooding.
	Proceeding weather summary?
	The rainfall event that happened occurred in a very short space of time. A large amount of rainfall fell on the evening of the 27 May.
	The amount of rain that fell overwhelmed the drainage systems and sadly caused flooding to many people and properties.
	Most areas that experienced flooding are served by sewer infrastructure but the magnitude of the storm that occurred was too great, even for a drainage system designed to modern standards to have dealt with.
Could it happen again?	Yes. Data suggests that rainfall patterns of large amounts of rainfall falling in short periods are happening more often as a result of climate change. However, the localised nature of the surface water flooding makes it extremely difficult to predict exact localities that could be affected.
What is a 1% Annual Exceedance Probability event?	A 1% flood event equates to the likelihood of flooding in any year, although unlikely multiple storm events of the same return period can occur in any one year. Similarly, just because a 1% flood event occurred in the previous year, does not mean that it will not happen in the following years.
What happens next?	A key finding of this report is the need for Milton Keynes Council, and Anglian Water, to undertake surveys of their drainage pipes, manholes and drainage gullies, to confirm they are all working correctly.
What is Milton Keynes Council doing to manage	A number of potential improvements have been identified. However, these improvements

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05 Milton Keynes **Borough Council**

FWMA SECTION 19 REPORT

Milton Keynes Borough Council

Project No.: 70048076 | Our Ref No.: S19-2018-05

future flood events?

will need to be designed in detail and assessed before they can be put into action.

What can I (an affected resident) do?

Everyone has their part to play to help reduce the flooding that happens to our properties, things we can do as a community are:

Routine Maintenance

- Making sure people do not use road gullies and ditches as rubbish bins they can't drain the water as fast as it could if they have rubbish in them;
- Make sure grass clippings and garden waste are collected, so they don't flow into our drainage networks
- Report blocked road gullies to Milton Keynes Council
- Make sure watercourses are kept clear. Small watercourses should be maintained by the property owner, however working on water can be dangerous, so make sure clearance is done safely, if in doubt ask Milton Keynes Council for guidance
- Think about what you would do in a flood, do you have a "grab bag" ready if you need
 to evacuate? Individuals may seek to make their properties flood resistant. There are
 many companies that can help design and install special equipment to help protect
 your property

Following a Flood Warning

Report any blocked road gullies to Milton Keynes Council

During a Flood Event

- Encourage people to be safe and not to drive through flood water, they are putting their car at risk and the flood waves can cause flooding to properties
- If safe to do so, take photographs / videos of the flooding
- Notify Milton Keynes Emergency Planning Team of flooding, and of any particular safety concerns.
- Do not put yourself or others at risk, contact Emergency Services and provide as much information as possible.

Following a Flood Event

- Contact Milton Keynes council to identify if your property has flooded, if possible provide photographs or videos of the flooding.
- Consider repairing walls and floors with flood resilient materials to flood minimise damage in the future

3. INTRODUCTION

3.1. BACKGROUND

- 3.1.1. This document has been produced by WSP on behalf of Milton Keynes Council, in support of the production of a Section 19 Flood Investigation Report, as specified in the Flood and Water Management Act 2010¹ (FWMA).
- 3.1.2. On the evening of 27 May 2018 significant rainfall in the areas of; Beanhill, Coffee Hall, Lakes Estate, Netherfield, Oldbrook, Stantonbury, Great Linford, Eaglestone, Central Milton Keynes, Downs Barn, Fishermead, Heelands, Neath Hill, Stony Strattford, and Bradwell Common, resulted in flooding of over 315 residential properties, the Hospital, and a number of commercial properties.
- 3.1.3. Milton Keynes Council, as Lead Local Flood Authority (LLFA), has a responsibility under the Flood and Water Management Act 2010 (FWMA 2010), to undertake flooding investigations, specifically Section 19 states:

Local authorities: investigations

- (1) On becoming aware of a flood in its area, a lead local flood authority must, to the extent that it considers it necessary or appropriate, investigate—
- (a) which risk management authorities have relevant flood risk management functions, and
 - (b) whether each of those risk management authorities has exercised, or is proposing to exercise, those functions in response to the flood.
- (2) Where an authority carries out an investigation under subsection (1) it must—
 - (a) publish the results of its investigation, and
 - (b) notify any relevant risk management authorities.
- Milton Keynes Council Flood Incidents Policy is currently in draft format pending full Council 3.1.4. approval, a current working draft is presented in Appendix A.
- 3.1.5. The information provided by Milton Keynes Council identified a distribution of reported flood incidents, as summarised in Table 1, reproduced from data obtained from the emergency planning team (10 July 2018). Figure 1 (Appendix A), provides a reference plan identifying these regions, and the distribution of flooding incidents has been mapped by tallying the number of properties flooded, within a street. Some of the areas affected were verified by WSP through site inspections just after the flood event, from the observations of flood indicators, not all of the reported flooding incidents will have resulted in the ingress of water into the property, and some properties had not notified Milton Keynes of being flooded.

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05

WSP October 2018

Milton Keynes Borough Council

¹ https://www.legislation.gov.uk/ukpga/2010/29/contents

FWMA SECTION 19 REPORT

Milton Keynes Borough Council

Project No.: 70048076 | Our Ref No.: S19-2018-05

- 3.1.6. This version of the report is provided as a draft for Public Consultation, Milton Keynes Council would welcome any further data or photographs of the flooding that has occurred.
- 3.1.7. To date the Emergency Planning team has been made aware of:
 - 686 reported incidents of flooding
 - 315 have been confirmed as causing internal flooding
- 3.1.8. The Emergency Planning Team data includes information that could identify individual properties, as such the data has been grouped into roads and the cumulative number of flood incidents displayed near to the road centre-point.
- 3.1.9. Milton Keynes Waste Collection service has kept independent records of properties from which flood damaged items have been collected, these indicate that internal flooding could have occurred to over 50 additional properties.

Table 1 - Distribution of Flood Incidents (reported to the Emergency Planning Team)

Estates	Total	Unclear if internal or external flooding	Internal Flooding
Astwood	1	-	-
Beanhill	106	2	55
Bletchley	22	-	6
Bradville	2	-	-
Bradwell Common	1	-	1
Campbell Park	3	-	-
Cmk	2	-	2
Coffee Hall	241	3	104
Conniburrow	1	-	1
Downs Barn	3	-	2
Eaglestone	6	-	2
Fishermead	13	-	2
Furzton	4	-	-
Galley Hill	1	-	1
Granby	1	-	1
Great Linford	7	-	4
Heelands	1	-	1
Kents Hill	1	-	1
Lakes Estate	11	-	11
Leadenhall	4	-	4
Neath Hill	18	-	16
Netherfield	49	2	31
New Bradwell	6	-	-
Newport Pagnell	25	1	7
Oldbrook	71	1	25
Olney	1	-	-
Peartree Bridge	3	-	2
Pennyland	2	-	1
S. Goldington	-	-	-
Springfield	3	-	1
Stantonbury	5	1	3
Stoke Goldington	54	1	24
Stony Stratford	1	-	1
Tattenhoe	1	-	-
Tinkers Bridge	9	-	4
Tongwell	2	-	-
Various	1	-	-
Willen	1	-	-
Wolverton	1	-	1

FWMA SECTION 19 REPORT

Milton Keynes Borough Council

Project No.: 70048076 | Our Ref No.: S19-2018-05

3.2. SITE VISIT

- 3.2.1. WSP staff carried out site visits to the affected areas (as shown in Appendix A) on 30 May, 01 and 12 June 2018. Site visits were undertaken following the flood event, and a walkover was conducted for most of areas that flooded. Indicators of flooding (such as carpets and other household items) being left outside with signs of water damage, rack marks (caused by floating debris adhering to external walls), and wicking on brickwork were noted.
- 3.2.2. Formal interviews were not conducted, as the focus was to determine the likely extent of flooding by noting the indicators of flooding. The information gathered during the site visits, along with the existing knowledge of Milton Keynes from the Council's Lead Local Flood Officer has contributed to the preparation of this report.
- 3.2.3. It is envisioned that this report will be updated as more evidence from residents and stakeholders is received.

3.3. LIMITATIONS

- 3.3.1. The information contained in this document has been compiled for the benefit of Milton Keynes Council officers and contractors, Parish Councils, Anglian Water, and the affected community.
- 3.3.2. It should be noted that much of the following record is dependent upon observed flooding indicators and anecdotal evidence from Milton Keynes Council officers. Prior to taking any recommendations forward, a feasibility study should be undertaken to confirm the viability of any interventions. Any proposals should be robustly reviewed to ensure that reasonable cost-benefit ratios are achieved, and that the mitigation measures do not adversely impact other properties i.e. by increasing the rate and volume discharged from one area to another.
- 3.3.3. At this stage investigations regarding the capacity of the drainage network have not been undertaken, this would require intrusive CCTV drainage surveys to be undertaken, and comparison to the statutory drainage asset plans held by Milton Keynes Council, Anglian Water and any third parties affected.
- 3.3.4. Any data provided to WSP has not been independently validated and has been assumed to be correct and representative of the flood event under consideration.

4. ROLES & RESPONSIBILITIES

4.1. MILTON KEYNES COUNCIL

- 4.1.1. Under the FWMA 2010, Milton Keynes Council, as the Lead Local Flood Authority (LLFA):
 - is responsible for coordinating the management of flood risk from local sources. This includes surface water, groundwater and ordinary watercourses;
 - has a duty to investigate and publish reports on flood events (to the extent it considers necessary); and,
 - is responsible for compiling and maintaining a register of structures and features that have a significant effect on flood risk.
- 4.1.2. Milton Keynes Council is also the Highway Authority and has the following powers and duties:
 - maintain highways, including ensuring that highway drainage systems are clear and that blockages on the highway are cleared;
 - deliver works that they consider necessary to protect the highway from flooding, either on the highway itself or on land which has been acquired by the Highway Authority in the exercising of highway acquisition powers; and
 - divert parts of watercourses or carry out any other works on any form of watercourse if it is necessary for the construction, improvement or alteration of the highway or provides a new means of access to any premises from the highway.
- 4.1.3. The Council also has other related roles in planning and development control, public health, and emergency planning.

4.2. ENVIRONMENT AGENCY

- 4.2.1. The Environment Agency is responsible for providing a national strategic overview of flooding. The Environment Agency is also responsible for managing flood risk from Main Rivers. The Environment Agency does not have a responsibility for surface water flooding.
- 4.2.2. The Environment Agency has a key role in providing flood warnings to the public and in protecting and improving the natural environment.
- 4.2.3. The Environment Agency has permissive powers to reduce flood risk by undertaking work on Main Rivers and flood defence structures.

4.3. ANGLIAN WATER

- 4.3.1. Anglian Water has responsibility for the public foul and surface water sewer systems in its ownership. Anglian Water is also responsible for treating sewage from its foul network, and to empty and dispose of the contents of their sewers. The Water Company has a general duty (under Section 94 of the Water Industry Act 1991) to provide, extend and improve public sewer systems, ensuring the areas they serve are 'effectually drained'.
- 4.3.2. Anglian Water must also maintain a register of flooding from sewers. The register records information which is used to apply for investment funds from Ofwat to undertake improvements or repairs to the foul and surface water networks. Investment is agreed with Ofwat on a five year cycle referred to as Asset Management Periods (AMP). The current AMP runs from 2015-2020.

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05

Milton Keynes Borough Council

4.4. RIPARIAN LANDOWNERS

4.4.1. Landowners whose property is adjacent to a river, a stream or a ditch are likely to be 'riparian owners'. Riparian owners have a responsibility to maintain the bed and banks of any watercourse within or adjacent to their property, in most cases even if that watercourse is adjacent to a highway, and to ensure there are no obstructions to the natural flow of water.

4.5. PROPERTY OWNERS

4.5.1. Responsibility for protecting property from flooding lies in the first instance with the property owner. Property owners whose home or business premises are located in areas known to be at risk of flooding should consider making their own flood defence preparations. Property owners also have a common law duty to mitigate their losses during a flood event, but without increasing the damage to neighbouring properties.

5. DRAINAGE STANDARDS

5.1. INTRODUCTION

5.1.1. In order to inform the selection of appropriate actions it is necessary to consider the required design performance for drainage systems. Within the UK there is no set level of service that existing drainage assets must achieve, however there a number of inconsistent standards that exist as listed below. UK case law (Marcic V Thames Water²) makes it clear that the sewer operator, if operating and maintaining their sewers properly, is not responsible for flooding if caused by a lack of capacity in the system. However, it is useful to assess the performance of the drainage assets against current design guidance, especially for new roads.

5.2. BRITISH STANDARDS

5.2.1. The British Standard for Drain and Sewer systems outside buildings (BS EN 752:2008), states that the 2% AEP event standard should be used for the drainage of vulnerable uses such as underground railways and underpasses.

5.3. DESIGN MANUAL FOR ROADS AND BRIDGES

- 5.3.1. Under the requirements for the design of new roads in accordance with the Design Manual for Roads and Bridges (DMRB), HA106/04, Drainage of Runoff From Natural Catchments, the manual states (Section 5.3):
 - "Highway drainage systems are designed to intercept and remove rainfall from short duration, high intensity events with return periods of 1 year (for no surcharge of piped systems or roadedge channels) or 5 years for no flooding of the carriageway. Flood flows from natural catchments can have durations of several hours so the potential for traffic disruption is greater than that produced by runoff from paved surfaces lasting only a few minutes. For this reason, it is recommended that flow rates from natural catchments without defined watercourses should be assessed for design storms with a return period of 75 years."

5.4. SEWERS FOR ADOPTION

5.4.1. Under the requirements of Sewers for Adoption, 7th Edition new drainage needs to be designed to prevent flooding for the 3.3% rainfall event.

² https://publications.parliament.uk/pa/ld200304/ldjudgmt/jd031204/marcic-2.htm

6. CONTEXT & SETTING

6.1. BACKGROUND

6.1.1. The purpose of this section is to present the publicly available information related to flooding within the areas affected.

6.2. TOPOGRAPHY

- 6.2.1. Appendix B, provides a ground elevation map derived from the Environment Agency's LiDAR data.
- 6.2.2. The ground elevation map indicates that the areas affected are located on higher ground, with elevations above 90 m Above Ordnance Datum (AOD) being affected.

6.3. GEOLOGY

6.3.1. The British Geological Society provides open source superficial and bedrock geological definitions for the whole of the UK. This data has been used to create the Superficial Geology and Bedrock Geology maps, provided in Appendix B. The types of geological deposits encountered are likely to have a low to moderate infiltration potential, indicating that during high intensity storms, higher rates of surface water run-off are likely to occur, than for high infiltration potential soils.

6.4. ENVIRONMENT AGENCY FLOOD RISK FROM RIVERS

- 6.4.1. Fluvial flooding, or flooding from rivers, occurs when the capacity of the watercourse is overwhelmed by high flows, resulting in water flowing out of the watercourse banks, causing flooding to adjacent land.
- 6.4.2. Appendix B, shows the extents of the fluvial (river) flooding predicted by the published Environment Agency Flood Maps. The mapping indicates that the majority of the areas affected are outside of areas identified as being at risk of fluvial flooding. Therefore, it is considered unlikely that flooding from the rivers, was a concern during the flooding.

6.5. ENVIRONMENT AGENCY FLOOD MAP FOR SURFACE WATER

- 6.5.1. Surface water flooding, or pluvial flooding, occurs when the carrying capacity of the drainage network is unable to cope with the amount of rainfall being generated within an area. Pluvial flooding is normally associated with high intensity summer storm events.
- 6.5.2. Appendix B, presents the Environment Agency's flood map for surface water, the mapping indicates that within the areas identified as having experienced flooding, surface water flow routes are predicted, and therefore surface water flooding would be expected, during a significant rainfall event.

WSP FWMA SECTION 19 REPORT
October 2018 Project No.: 70048076 | Our Ref No.: S19-2018-05
Page 10 of 32 Milton Keynes Borough Council

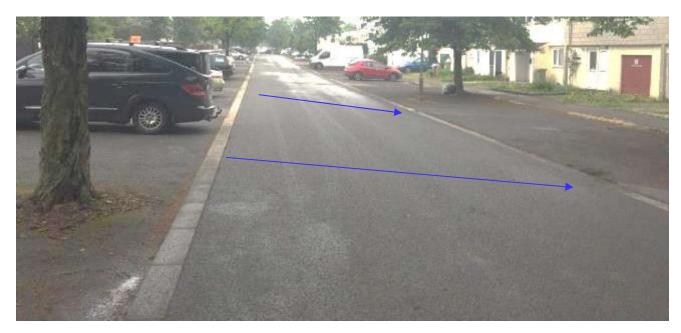
7. RECORDED FLOOD INCIDENTS

7.1. OVERVIEW

- 7.1.1. This section provides a summary of the observations from the Site Inspection undertaken; the weather was generally dry with good visibility. The inspections were undertaken from the public highway, using public footpaths.
- 7.1.2. Following the flood event, the following areas where visited and indicators of flooding where observed at:
 - Coffee Hall
 - Oldbrook
 - Netherfield
 - Milton Keynes Hospital
 - Winterhill
- 7.1.3. Note individual properties are not listed as part of this document, and reasonable attempts have been made to remove addresses / number plates from the photographs provided.

7.2. COFFEE HALL

- 7.2.1. Within Coffee Hall, indicators of surface water flooding was noted within the following roads:
 - Daniels Welch
 - Elfords
 - Garraways
 - Jonathans
 - St Dunstans
 - Hamlins
 - Rochfords
- 7.2.2. The flooding mainly occurred within the southern half of Coffee Hall, with flood depths likely to have increased as the surface water flowed from west to east.
- 7.2.3. Figure 1 provides a representative photograph of the street layout for this area, it is generally formed of blocks of terraced housing set back from the carriageway, with front gardens, and off-street parking. The area has some amenity tree planting, but the general street scene is mainly hard-paved. Highway drainage gullies tended to be located on the low side at the back of the parking area, the whole road cross-falls to one side.



FWMA SECTION 19 REPORT

Milton Keynes Borough Council

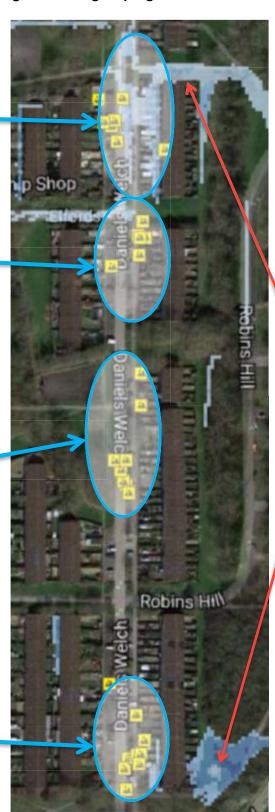
Project No.: 70048076 | Our Ref No.: S19-2018-05

Figure 1 – Typical Road Layout

- 7.2.4. The Site Investigation focused on Daniels Welch, of which there was significant evidence of flooding affecting a number of properties on the left hand side (evidence of carpets having been removed, and placed to dry / be disposed of in the front gardens.
- 7.2.5. The rack marks indicated that water is likely to have exceeded the door thresholds by around 100 mm to 200 mm, significant variation was observed, with some properties with evidence of water up to the letter box, mid door level. The flood water is likely to have exceeded the level of the damp-proof course, and many of the properties have front facing air bricks. Therefore water ingress into the properties is likely to have occurred. Figure 2 and 3 provide a sample of the types of indicators observed during the site walkover. Figure 4, presents the locations where photographs were taken, and clusters of photographs indicate areas where the greatest number of flooding indicators where observed.

Figure 2 – Indicator of Water Damage Daniels Welch

Figure 3 – Indicator of Water Ingress to Properties


Figure 4 – Observed Flooding Indicator groupings

Evidence of flooding on both sides of the streets

Likely to have been flooded: 121 to 141
Evidence of interim drainage channel to side of 141

Likely to have been flooded: 145 to 175

Likely to have been flooded: 213 to 233

Flood Map for Surface Water predicted flood risk areas

7.2.6. Along Daniels Welch the flooding has occurred within the low ground at the front of residential properties on the low side of the road.

7.3. OLDBROOK

- 7.3.1. Flooding within Oldbrook, generally follows the route of a historic watercourse, which is now understood to be integrated within the Public Sewer system maintained and operated by Anglian Water. During the Site Inspections indicators of flooding were observed along the following roads:
 - The Boundary
 - Oldbrook Boulevard
 - Larwood Place
 - Verity Place
 - Hutton Avenue
 - Shackleton Place
 - Grace Avenue (pipe burst on Anglian Water Sewer)
- 7.3.2. Two main areas of Oldbrook were inspected, the reported property flooding to the east of the area, and the burst sewer at the junction of Kirkstall Place and Grace Avenue.

OLDBROOK EAST

- 7.3.3. Flooding was inspected around the eastern part of Oldbrook, with evidence of flooding on Larwood Place, Hutton Avenue, Verity Place, and Shackleton Place. Flooding appeared to be related to a flow path from the V7 Saxon Street Overpass, along Larwood Place, down Hutton Avenue, with flooding accumulation of flooding at the roundabout of Hatton Avenue and Shackleton Place, as shown in Figure 7.
- 7.3.4. Figure 7 shows that the flooding indicators are along the areas predicted to be at risk of flooding, as indicated on the Flood Map for Surface Water. Furthermore, the Flood Map for Surface Water identifies a significant flood extent in the area of the burst pipe. Inspection of DigDat utility information

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05

Milton Keynes Borough Council

Figure 5 - Oldbrook flood flow route, flood map for surface water and LiDAR

Environment Agency 1% AEP year surface water flooding

- 7.3.5. Milton Keynes Council shared video of surface water discharging over the steps adjacent to the V7 Saxon Street, and during the Site Inspection there was evidence of siltation on the footway adjacent to the embankment of the bridge, as shown in Figure 8.
- 7.3.6. Figures 9 to 11 provide photographs of the indicators of flooding in the area.

Figure 7 – Indicators of Flooding Larwood Place

Figure 8 – Oldbrook Indicators of Flooding

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05 Milton Keynes **Borough Council**

Figure 9 – Indicators of Flooding Shackleton Place

BURST PIPE

7.3.7. Figure 5 below shows the damage caused by a surface water sewer burst pipe. From inspection, of the local topography the chamber that failed is likely to be at the confluence of a number of drainage pipes from higher ground. Figure 6 shows the local ground terrain from LiDAR data.

Figure 10 – Damage caused by surface water burst pipe

40 48 56 64 72 80 88 96 104 112 120 Burst Pipe Location

Figure 11 –Burst Pipe Location and Local Topography

7.4. HOSPITAL

- 7.4.1. Milton Keynes Hospital was flooded during the event, and from discussions with the Estates Team, flooding of the Hospital has occurred a number of times previously.
- 7.4.2. Indicators of flooding were noted along the access road from Flemming Drive, around the Hospital. Figure 12 presents the LiDAR data, and Flood Map for Surface Water outline.

Figure 12 – Hospital flood flow route, flood map for surface water and LiDAR

7.4.3. The indicators of flooding generally follow the predicted extents from the Flood Map for Surface Water.

7.5. NETHERFIELD

- 7.5.1. During the Site Inspection of Netherfield, there were fewer indicators of flooding observed. The properties with indicators of flooding were those with garages and door thresholds below the carriageway and low kerbs. Flooding was observed along the southern portions of the following roads:
 - Broadlands
 - Farthing Grove
 - The Hide
 - Farnborough
 - Beadlemead
 - Langland Road
- 7.5.2. It is noted that a flow route exists between Netherfield and the Hospital, and therefore the Netherfield catchment is likely to be of significance when considering potential mitigation measures for the Hospital.
- 7.5.3. Only a preliminary inspection of Netherfield was undertaken, however a number of indicators of flooding were observed. The properties with indicators of flooding were the properties were those with garages and door thresholds below the carriageway and low kerbs.
- 7.5.4. The Flood Map for Surface Water is provided in Figure 13.

FWMA SECTION 19 REPORT
Project No.: 70048076 | Our Ref No.: S19-2018-05
Milton Keynes **Borough Council**

Figure 13 – Netherfield, flood map for surface water and LiDAR

7.6. WINTERHILL

- 7.6.1. During the Site inspection of Winterhill, there were indicators of flooding observed. These were mainly associated rack marks on the shop fronts, and with pipe bursts of the surface water drainage network, which resulted in damage to the car parking areas.
- 7.6.2. Flooding was observed:
 - Cairngorm Gate retail units (pipe burst on Anglian Water Sewer)
- 7.6.3. Within the retail park evidence of flooding up to 300 mm deep within the retail units was observed, a number of the stores were in the process of cleaning up the damage, which was across the ground floor areas of the retail units. From the inspection it was noted that flood waters would be impounded by the railway embankment.

7.7. GENERAL OBSERVATIONS

7.7.1. During the Site Inspections a number of road gully covers were observed to be covered by leaves and other detritus, which may have reduced to capacity of the gullies. It is not obvious if the road gully inlets were blocked, before, during, or after the flood event. However, it is reasonable to assume that some of the road gully covers may have been blocked or partially blocked.

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05

Figure 15 – Road Gully covered in leaf litter and detritus, and uncovered (Cairngorm Gate)

7.7.2. The properties that have been affected are generally those located in local topographic depressions, and therefore these may benefit from Property Level Protection (PLP), which can in certain circumstances ameliorate the impacts of flooding. Appendix D provides an outline of PLP.

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05 Milton Keynes **Borough Council**

8. RAINFALL ANALYSIS

- 8.1.1. The Met Office publishes long term average monthly rain records, split into regions of the UK. Appendix C, provides a summary of this information with the long term monthly average, which indicates that for the Midlands the average monthly rainfall for March, April, and May, are 55, 53, and 59 mm respectively. The values for 2018 were 106, 82, and 57 mm. Therefore in the two months leading up to the flood event in May weather conditions had been wetter than average.
- 8.1.2. Initial discussions with Milton Keynes Council identified that they had contacted Anglian Water, who reported that their rain gauge had recorded over 90 mm rainfall during the event, within a 1 to 2 hour duration
- 8.1.3. From discussions with residents of the area, many indicated that the worst rainfall occurred within a 1 to 2 hour period, with different regions experiencing the rainfall at different times. From the information gathered, the course of the storm was generally in a north-westerly direction, tracking over the central urban areas of Milton Keynes.
- 8.1.4. Rain gauge data has been obtained from the Environment Agency's³ archive, for the purpose of this Preliminary Report a single nearby rain gauge has been examined (1770 Woburn Sands), which is in the south east corner of Milton Keynes, as show Appendix A.
- 8.1.5. Appendix B shows a summary of the rainfall recorded at this gauge, which indicates a number of smaller storms occurred throughout the 27 May 2018, with a larger storm occurring later in the day. The cumulative rainfall for the day was recorded as being 32.4 mm, with no rainfall recorded on the following day. However, the larger single storm consisted of a total of 27.2 mm. It should be noted that the Woburn Sands gauge, is outside of the corridor of the main areas affected, and as such it may not have received the full rainfall depth that occurred in the event.
- 8.1.6. Using the FEH rainfall parameters (Table 3), centred on Milton Keynes Hospital, obtained from the HR Wallingford Web Service, a Depth-Duration-Frequency Curve has been established, and is presented in Appendix B.

Table 2 - FEH 2013 Rainfall Parameters

Parameters Values

Version "FEH Web Service" (2.0.0.0) Exported At 17:21:61 30-05-2018

Rainfall model FEH 2013
Calculation type Design rainfall
Calculation mode For a point

Calculation location 486849 237268

Duration 1 Hours

Fixed duration no

³ http://environment.data.gov.uk/flood-monitoring/archive

FWMA SECTION 19 REPORT

Project No.: 70048076 | Our Ref No.: S19-2018-05

Milton Keynes Borough Council

8.1.7. Figure 9 indicates that a 90 mm rainfall event, in 24 hours would equate to a return period beyond 0.05% AEP, however, based on consideration of a single storm of 27.2 mm of 30 minute duration, this would equate to a return period of between 5.0% AEP and 3.3% AEP. This analysis has been conducted on a single rain gauge, over a single day. Further rainfall data has been provided by Meniscus⁴, who have provided the data outlined in Table 3.

Table 3 - Data Provided by Meniscus

Location on 27th May 2018	Easting and Northing	Rainfall depth	FEH99 Return Period
52°02'02.8"N 0°45'13.2"W – Oldbrook (Verity Place)	485594,238033	67 mm. Duration 1 hours	Return Period 1 in 309 years
52°01'23.3"N 0°44'37.2"W – Coffee Hall (Daniels Welch)	486301,236824	Rain depth 91 mm. Duration 1. 75 hours.	Return Period 1 in 602 years
52°01'15.9"N 0°43'46.5"W – Netherfield (Beadlemead)	487271,236612	Rain depth 84 mm. Duration 1.75 hours.	Return Period 1 in 460 years
52°00'59.6"N 0°44'22.2"W – Beanhill (Neapland)	486599,236097	Rain depth 91 mm. Duration 1.75 hours.	Return Period 1 in 602 years
52°02'35.0"N 0°45'39.4"W – CMK (Civic Offices)	485077,239019	Rain depth 62 mm. Duration 1 hours.	Return Period 1 in 237 years
52°07'59.3"N 0°46'50.1"W – Stoke Goldington (Orchard Way)	483562,249016	Rain depth 97 mm. Duration 1.5 hours.	Return Period 1 in 819 years

8.1.8. Based on the available data, witness evidence, and the indicators of flooding noted, it is considered very likely that the rainfall event experienced was significantly in excess of the 1.0% Annual Probability Event, with some areas affected by rainfall in excess of the 0.5% Annual Probability Event.

WSP October 2018 Page 26 of 32 FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05 Milton Keynes **Borough Council**

⁴ http://www.meniscus.co.uk/

CONSULTATION WITH RISK MANAGEMENT AGENCY'S 9.

9.1. **MILTON KEYNES COUNCIL - HIGHWAYS**

- 9.1.1. An interview was conducted with Milton Keynes Council Highway Team on 17 July 2018, to understand how the Highway Drainage infrastructure performed and to identify any areas of concern.
- 9.1.2. Under the FWMA, the Highway Authority has the following responsibilities:
 - Highways authorities (Highways England and unitary/county councils) have the lead responsibility for providing and managing highway drainage and roadside ditches under the Highways Act 1980. The owners of land adjoining a highway also have a common-law duty to maintain ditches to prevent them causing a nuisance to road users.
- 9.1.3. The Highways Team have provided significant records of their maintenance actions, including in the areas most affected by the flood events. The team undertakes the maintenance using an asset lead approach, with hotspot areas receiving additional attention.
- 9.1.4. The Highways Team have stated that since the event they have identified localised areas of concern, and in particular Wolverton Road. They have also identified that they have concerns regarding the effectiveness of perimeter filter drains around open space areas, which were installed during the development of the Milton Keynes.
- 9.1.5. The Highways Team have identified that in some areas the carrier pipes for the main sewer network change ownership along the network, leading to different levels of maintenance and inspection.
- Due to the magnitude of the storm event the Highways Team have indicated that the Highway 9.1.6. Drainage system performed well.

9.2. **ANGLIAN WATER**

- 9.2.1. A tele-conference was held with Anglian Water on 18 July 2018, the purpose of the interview was to understand how the Public Sewer Surface Water Drainage infrastructure performed and to identify any areas of concern.
- 9.2.2. Under the FWMA the Sewer Authority has the following responsibilities:
 - make sure their systems have the appropriate level of resilience to flooding, and maintain essential services during emergencies
 - maintain and manage their water supply and sewerage systems to manage the impact and reduce the risk of flooding and pollution to the environment. They have a duty under Section 94 Water Industry Act 1991 to ensure that the area they serve is "effectually drained". This includes drainage of surface water from the land around buildings as well as provision of foul sewers.
 - provide advice to LLFAs on how water and sewerage company assets impact on local flood risk
 - work with developers, landowners and LLFAs to understand and manage risks for example, by working to manage the amount of rainfall that enters sewerage systems
 - work with the Environment Agency, LLFAs and district councils to coordinate the management of water supply and sewerage systems with other flood risk management work.
- 9.2.3. Where there is frequent and severe sewer flooding, sewerage undertakers are required to address this through their capital investment plans, which are approved and regulated by Ofwat. This

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05 **WSP**

- happens every five years through the Price Review process. Water companies have outcome delivery incentives (ODIs) that they agree with customers and partners. All water and sewerage companies have sewer flooding ODIs.
- 9.2.4. Anglian obtained rainfall data from the Minisucs service and this has been provided to Milton Keynes LLFA, and is discussed in Section 8, of this report.
- 9.2.5. Anglian Water outlined that undertake maintenance works based on information received which identifies issues with their network, and this is informed by a risk based approach, and technical judgement. They also identified that the planned works are completed as soon as practicable, and are usually started within a few months of the anticipated start date.
- 9.2.6. Figure 15 provides a graph grouping the drainage related incidents that Anglian Water has attended between 2016 and 2018. The graph indicates that the majority of issues are associated with the sewer network that was transferred to Anglian Water under the Private Sewer Transfer Regulations 2011. These sewers were previously maintained under the responsibility of third parties.

Sewer Capacity Rodent Issues 68 Planned Work Other miscellaneous problems 17 **Operational Support** 11 Odour 2 33 No Apparent Problem Manhole Problem Transferred Manhole Problem Public Follow Up CCTV Flooding From Land **Customer Service General Blockage Transferred Sewer** Blockage S104 Sewer Blockage Public Sewer 116 Blockage Private Sewer / Drain Blockage Interceptor Public Blockage Highway Sewer Blockage 'Ex' S24 Sewer 10 3 0 50 100 150 200 250 300 350 400 450

Figure 16 – Anglian Water Incident Attendance (2016 to 2018)

ANGLIAN WATER POST EVENT ACTIONS

9.2.7. Within the area of Beanhill, Anglian Water confirmed that the surface water system has suffered from root ingress, and planned maintenance is in progress. However due to the significant volume

FWMA SECTION 19 REPORT Project No.: 70048076 | Our Ref No.: S19-2018-05 Milton Keynes **Borough Council**

- of rainfall that occurred, they consider that if the maintenance had taken place before the storm event, it would have had a negligible impact on the extent of flooding.
- 9.2.8. Anglian Water are also undertaking a review of the network capacity around Newport Pagnell.
- 9.2.9. Anglian Water have been made aware that the levels in the lakes rose very quickly, indicating that the wider surface water drainage network that discharges into it, was conveying water rapidly to the lakes.
- 9.2.10. Although the rainfall that occurred was very significant and locally overwhelmed the strategic drainage infrastructure, Anglian Water consider that the surface water system performed well during the event.

FWMA SECTION 19 REPORT

Milton Keynes Borough Council

Project No.: 70048076 | Our Ref No.: S19-2018-05

10. RECOMMENDATIONS

10.1. MAIN FINDINGS

- 10.1.1. This FWMA Section 19 report has considered the evidence presented, and based on this evidence, the flood event can be summarised as follows:
 - The flooding that occurred was due to a very intense summer storm, with indications that this was in excess of a 1% Annual Exceedance Probability Event, with a rainfall depth of up to 90 mm.
 - The Environment Agency's Flood Map for Surface Water, provides a reasonable representation of the flooding that occurred, and aligned well with the indicators of flooding, supporting the theory that the flooding was the result of a significant rainfall event.
 - Significant evidence of flooding was observed in the reported areas, including additional properties which at the time of the site inspection, had not notified Milton Keynes Council that they had flooded.
 - Reported internal property flooding affected at least 315 houses, the Hospital and a number of business premises.
 - Property flooding has tended to occur where the property door thresholds are perpendicular to the local flow routes i.e. the property acts as a barrier to flow, causing the water level to rise sufficiently to exceed the door threshold of the property causing internal flooding. Some evidence of water rising-up through the floor has also been noted.
 - Property flooding has also occurred where the driveway between the property and the highway falls towards the property, this is especially true where there is limited, or no kerb height.
 - Debris was observed on gully inlets, indicating that the storm event is likely to have mobilised a significant volume of leaf litter and other detritus. It is unclear if this occurred, before, during or after the event. This may have restricted the functioning capacity of the gullies. On clearing the gully grates, the internal gully was observed to be clear.
 - Evidence of sewer surcharging, causing damage to the overlying pavement has been observed, indicating that significant volumes of water were present within the sewer system.
- 10.1.2. It is concluded that the flooding experienced in Milton Keynes was the result of heavy rainfall, overwhelming the capacity of the drainage network, resulting in surface water flows gravitating towards low points in the local topography causing internal flooding to over 315 residential properties.

10.2. RECOMMENDATIONS

- 10.2.1. This preliminary report has been based on information available at the time of writing, and further information needs to be obtained before any conclusions can be reached. As such the following next steps are recommended:
 - A joint Drainage Service Review should be undertaken, involving Milton Keynes Highway and LLFA functions, Anglian Water, and other stakeholders with drainage assets. This review should seek to rationalise responsibility and maintenance functions.
 - Review of street-cleaning / grass cutting operations to reduce the amount of material that could cause blockages to the drainage system.

•	Promote the use of Sustainable Drainage Systems, for use on new developments. Milton Keynes to consider replacing off-street car parking areas with attenuating permeable paving, for use on new and existing developments.

GLOSSARY

Term Definition

Annual Exceedance

Probability Critical Ordinary Watercourse

Flood Defences

Flood Defence Level

Floodplain

Flood Source - Fluvial Flood Source -Groundwater

Flood Source - Pluvial

Flood Source - Tidal Flood Zone

Flood Zone Map

Flood Zone 1

Flood Zone 2

Flood Zone 3 (A)

Flood Zone 3 (B)

Fluvial Flooding

Freeboard

Lidar

Main River

os **Ordinary Watercourse**

Residual Risk

SFRA SuDS

The probability associated with a return period. For example an event of a 100 year return period has

an AEP of 1/100 or 1%

Is a watercourse that is not classified as "main river" but which the Environment Agency and other operating authorities agree is critical because it has the potential to put at risk from flooding large numbers of people and properties

Artificial structures maintained to a set operational level designed to protect land people and property from Tidal and Fluvial flood sources to an established AEP threshold.

The level required to be achieved by flood defences, usually the design flood level with a freeboard

allowance, to account for wave action and modelling uncertainty. An area of land adjacent to a river or tidal water body that is predicted to become affected by water as

the result of a defined flood event. When flows within watercourses exceed the capacity of the watercourse causing out of bank flows.

When groundwater levels rise above the surface of the ground or sufficiently high to ingress into basements and other below ground structures. Tends to occur at the bottom of a valley in large chalk

Overland run-off caused when natural and artificial drainage systems do not have sufficient capacity

to deal with the volume of rainfall.

When sea levels rise above the level of the land or beyond the operational level of flood defences. An area defined by the Environment Agency and/or SFRA as being at risk from a specified flood

event. The Flood Zone definitions ignore the benefits of flood defence structures.

A map produce by the Environment Agency, or SFRA which designates the flood zones. Site specific FRA usually refine the detail of these maps to provide a more accurate prediction at the Site level. Low Probability. Land defined as having a less than 0.1% AEP of flooding from tidal and fluvial

sources.

Medium Probability. Land defined as having a risk of fluvial flooding between 1% AEP and 0.1% AEP.

Or Land defined as having a risk of tidal flooding between 0.5% AEP and).1% AEP.

High Probability. Land defined as having a fluvial risk of 1% AEP or greater. Or a tidal risk of 0.5% AEP or greater.

Functional Floodplain. Defined by SFRA's as areas where floodwater is stored during lower AEP events, typically the 5% AEP.

Flooding caused by a river overtopping its banks, as a result of flows exceeding the rivers capacity. The difference between the Flood Defence level and the Design Flood level, usually 300mm for fluvial

sources and 600mm for tidal sources. But local variations do occur.

Light Detection And Ranging. Is an accurate ground terrain model obtained by aerial survey. The

typical vertical accuracy is +/- 150 mm, the horizontal spacing of survey points (resolution) is normally

0.5m in city centres, 1m in urban areas and 2m in rural areas.

Defined on the Main River map and relate to river's on which the Environment Agency have powers to

carry out flood defence works on

Ordnance Survey.

A watercourse which does not form part of a Main River

The risk which remains following the use of all risk reduction, mitigation and management options. Or

the risk beyond the design AEP event.

Strategic Flood Risk Assessment

Sustainable Drainage Systems, which are designed to manage surface water flows in order to mimic

the Greenfield run-off from an undeveloped site.

Appendix A

MILTON KEYNES DRAFT S19 POLICY

Draft Flood Investigation Policy

Milton Keynes Council as the Lead Local Flood Authority has a statutory duty to investigate flooding incidents in its area, to the extent that it considers necessary or appropriate. This requirement is set out in Section 19 of the Act.

On becoming aware of a flooding incident, the LLFA must decide whether it is necessary or appropriate to investigate further in order to:

- a) Identify which risk management authorities or individuals have flood risk management functions in respect of the flooding (it could be for example the Environment Agency if it comes from main rivers or the sea); and
- b) Establish whether that authority or individual has responded or is proposing to respond to the flood.

It is <u>not</u> the responsibility of the Investigating Officer to resolve the flooding, however they will investigate the cause and notify any relevant authority. In Milton Keynes, these authorities could include: Milton Keynes Council (including the Highways Department), Anglian Water, the Environment Agency, the Internal Drainage Board and the Parks Trust or landowners.

Upon learning of a flood event within Milton Keynes, the Investigating Officer will follow the established 'Flood Investigations Protocol' whereby it will be determined whether an investigation should be carried out, taking into account the available resources and significance of the event. It is therefore essential to determine what is 'necessary or appropriate' in the context of Milton Keynes.

A formal flood investigation will generally be carried out if one or more of the following occurs:

- Flooding has affected critical infrastructure¹ for a period in excess of three hours from the onset of flooding:
- Internal flooding² of a building has been experienced on more than one occasion in the last five years;

The investigation will follow the following process:

• Step 1. Flood incident reported to: Ilfa@milton-keynes.gov.uk

¹ **Definition of critical infrastructure:** Those infrastructure assets (physical or electronic) that are vital to the continued delivery and integrity of essential national services, the loss or compromise of which would lead to severe economic or social consequences, or to loss of life.

² **Definition of internal flooding**: A situation in which a building (commercial or residential) has been flooded internally, i.e. water has crossed the threshold and entered the building. This includes;

[•] Basements and ground level floors of the building;

[•] Garages/outbuildings if they are integral to the main occupied building. Garages adjacent or separate from the main occupied building are not included;

[•] Occupied static caravans and park homes. Tents are not included.

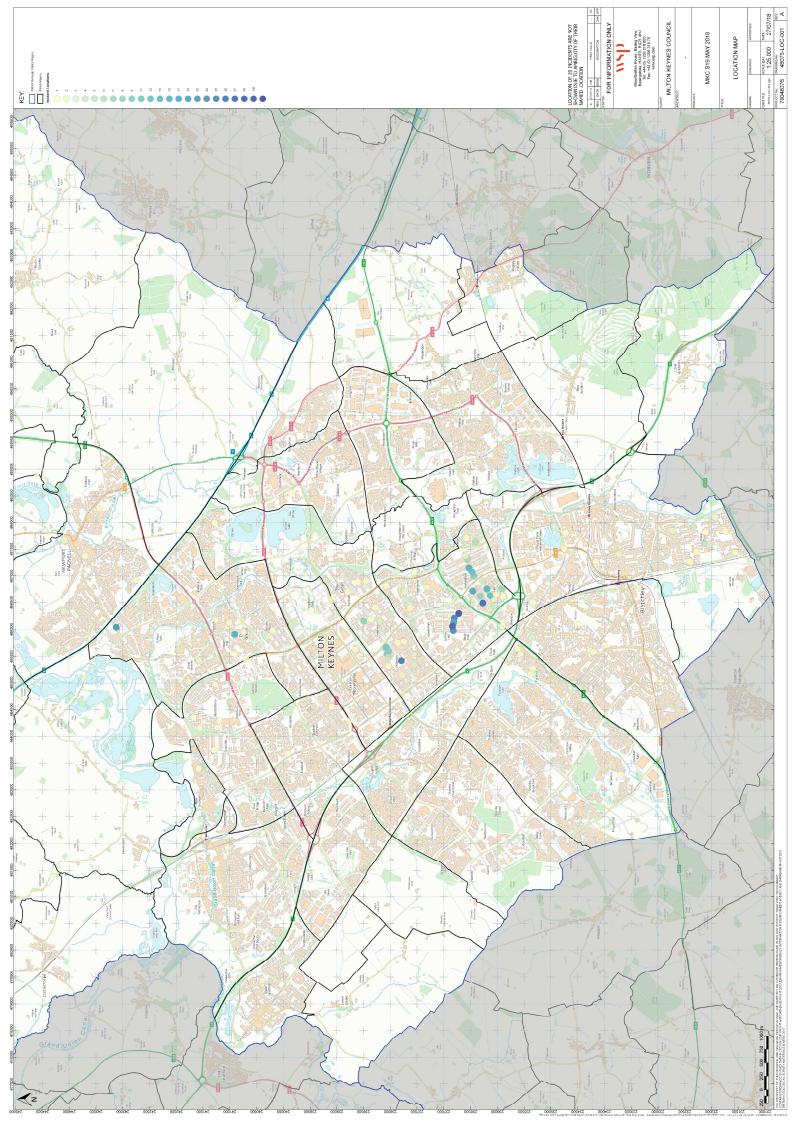
- **Step 2.** Review the information provided to determine if the incident meets the threshold for formal investigation. If the incident does not meet the threshold then advice and guidance is provided.
- **Step 3.** If the incident does meet the threshold, then a site meeting is arranged with the affected community and a data collection process undertaken. This will include any photos, video footage and eyewitness statements.
- **Step 4.** A draft Flood Investigation Report (FIR) is written and shared with all relevant Flood Risk Management Authorities (RMAs) for comment and review.
- Step 5. Any necessary revisions are made to the FIR and published online.
- Step 6. All RMAs and the affected community are notified of the publication.

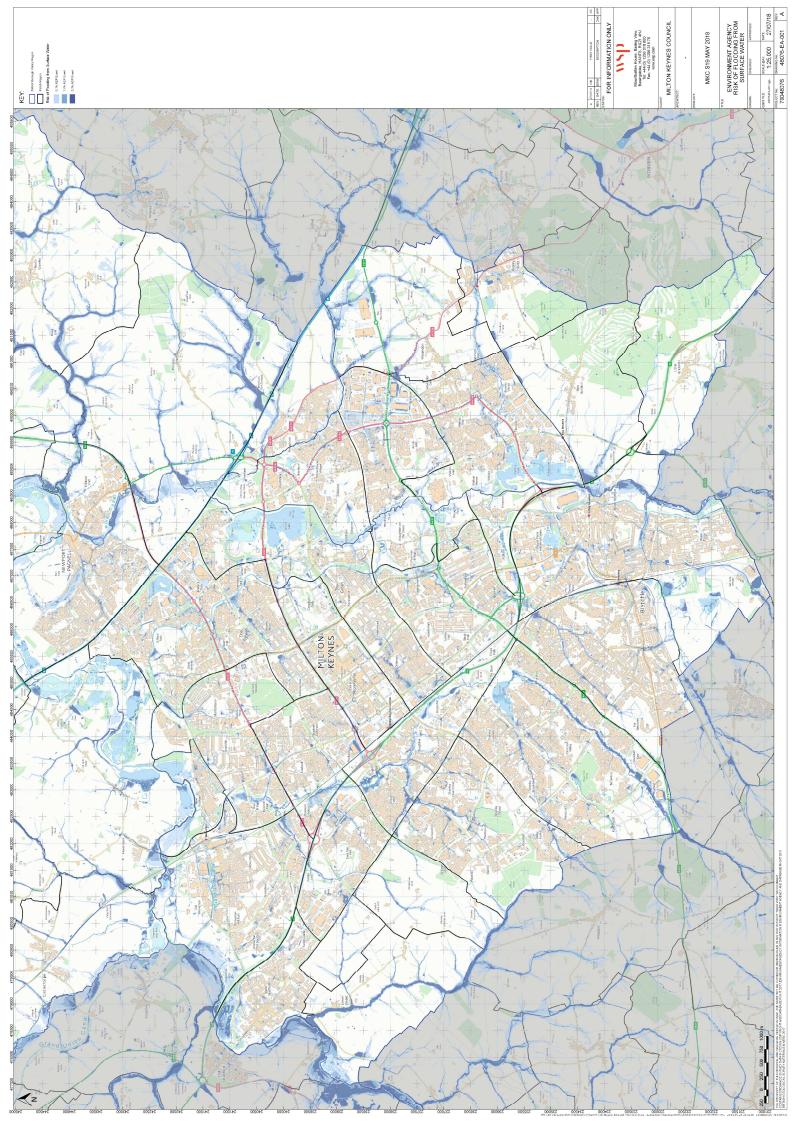
It is important to note that this is a technical assessment and that it is for the relevant responsible body or persons to assess any recommendations in terms of their legal obligation, resource implications, priority and cost/benefit analysis of undertaking such actions.

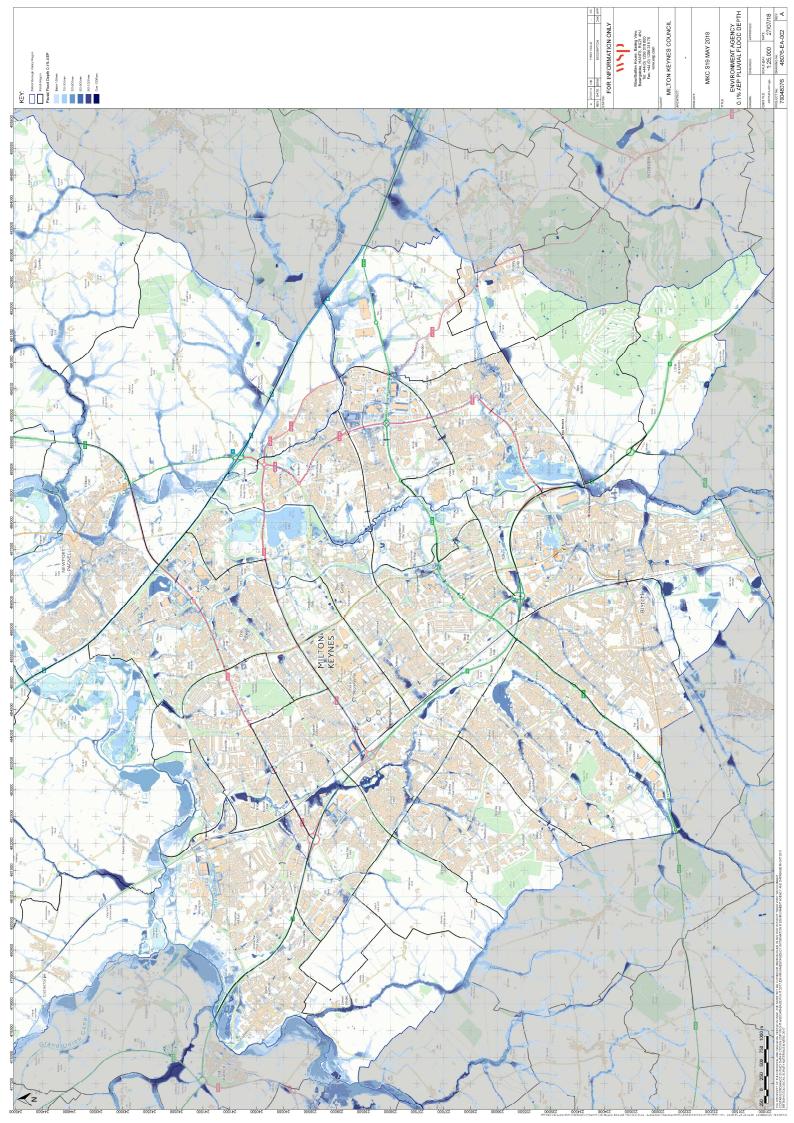
Following significant widespread flooding in Milton Keynes, where a number of incidents meet the thresholds for investigation, the investigations will be undertaken on a priority basis. This methodology includes an assessment of; the type or flooding, the impact, what was affected, duration of flooding, whether or not major roads were impassable, whether the flood water was contaminated, the depth of the flood water and the number of times the flooding has occurred.

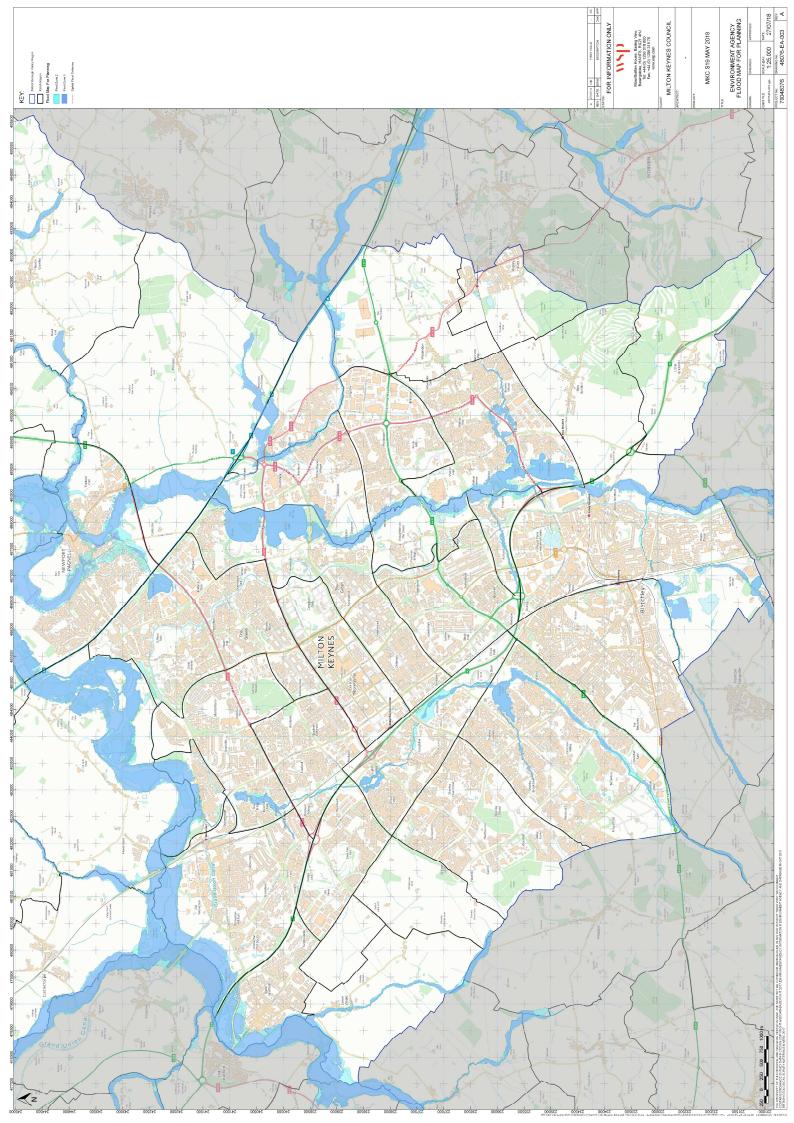
The Flood Investigation Reports describe the flood incident and aim to determine any contributing factors. The reports explain the roles and responsibilities of those involved, and provide recommendations for future actions.

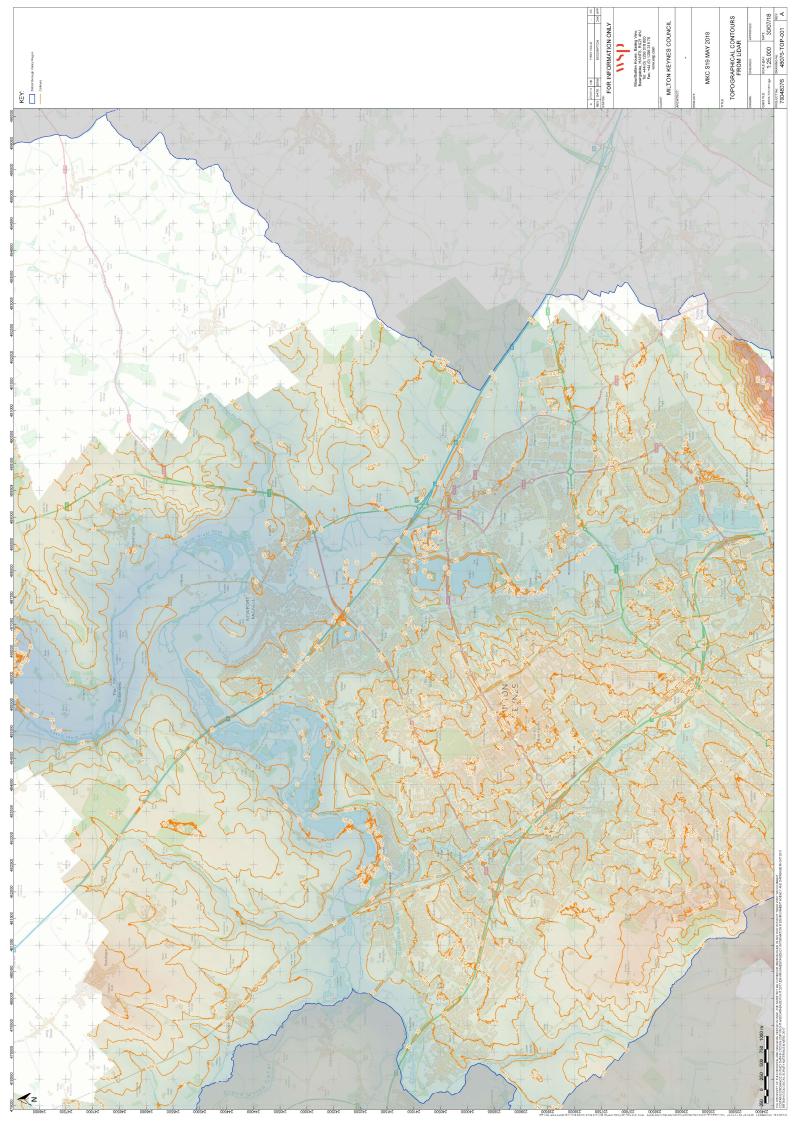
It is for the relevant responsible body or persons to assess each recommendation in terms of the legal obligation, resource implications, priority and cost/benefit analysis of undertaking such action.

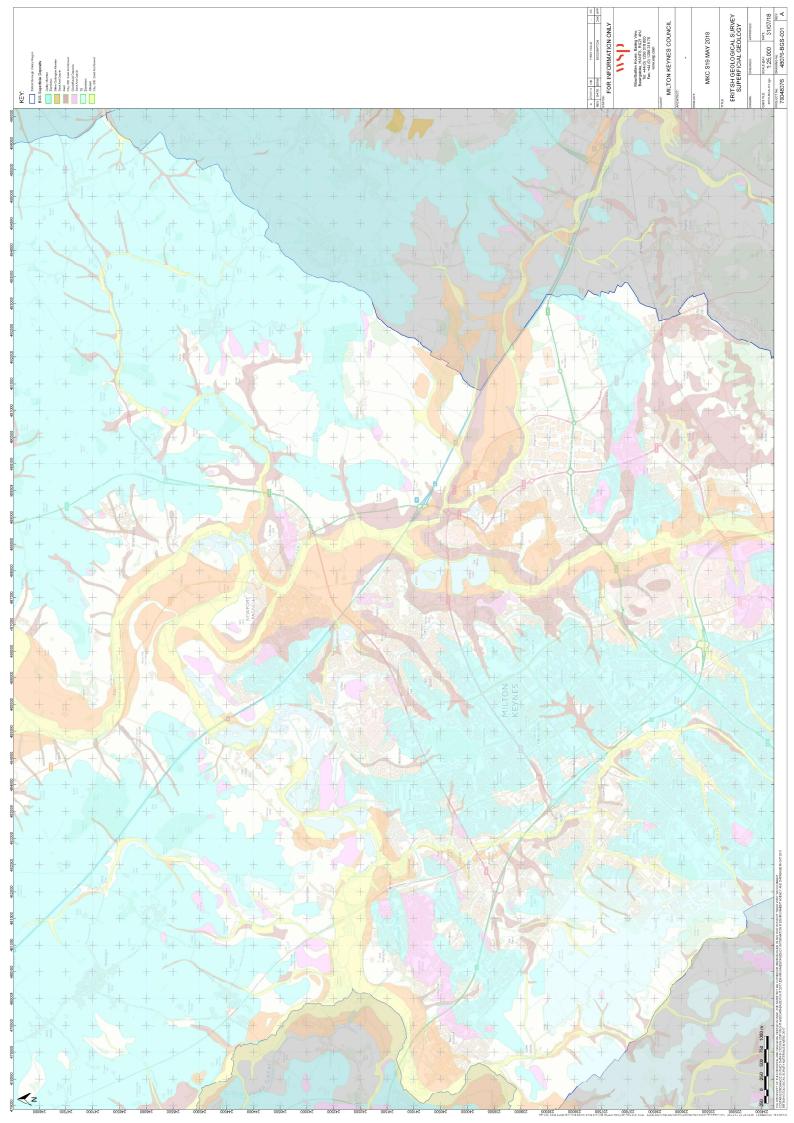

The Council will endeavour to undertake and complete a flood investigation report within six months of receipt of a flood incident report form; however this may not be possible following extensive flooding when significant numbers of reports of flooding are received.

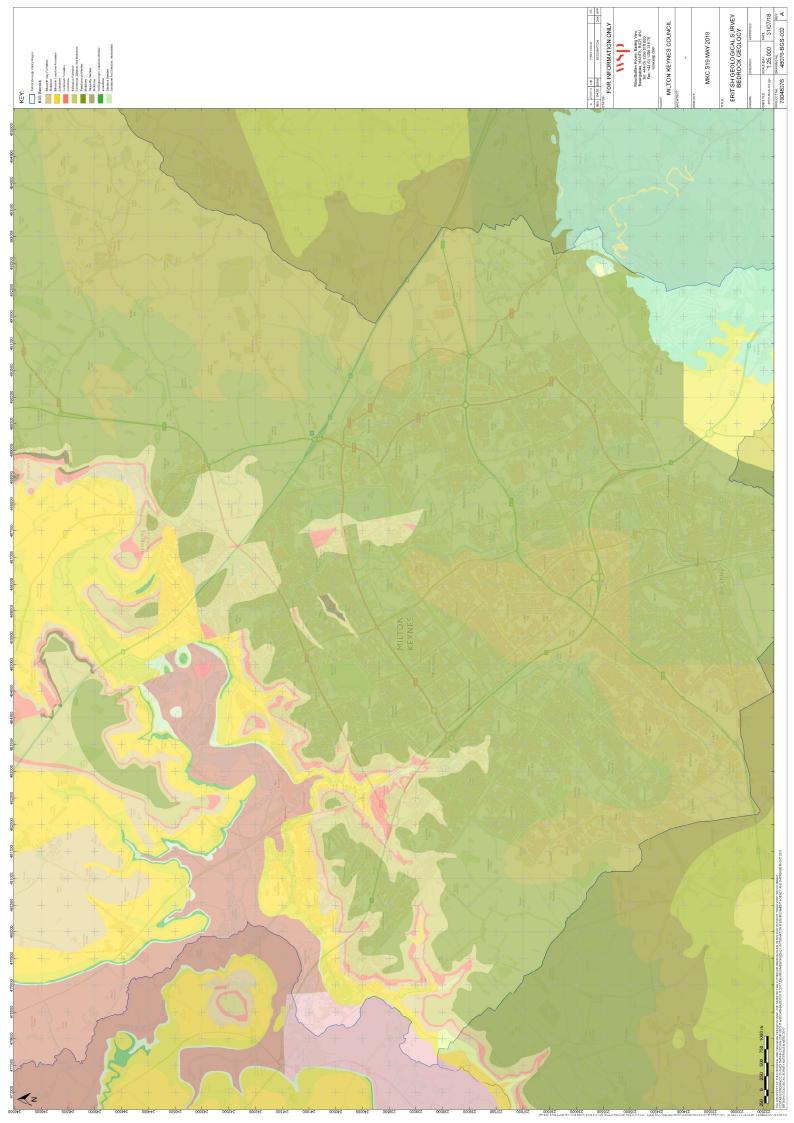

Note: The LLFA will not investigate incidents of structural dampness or where basements are affected by groundwater entering through cracks in the basement walls or floors. In the event that the cause of, and the responsibility for addressing the flooding is well understood, no formal investigation will be undertaken. The LLFA will only undertake a flood investigation if the incident is formally reported within 6 months of the flood event occurring.

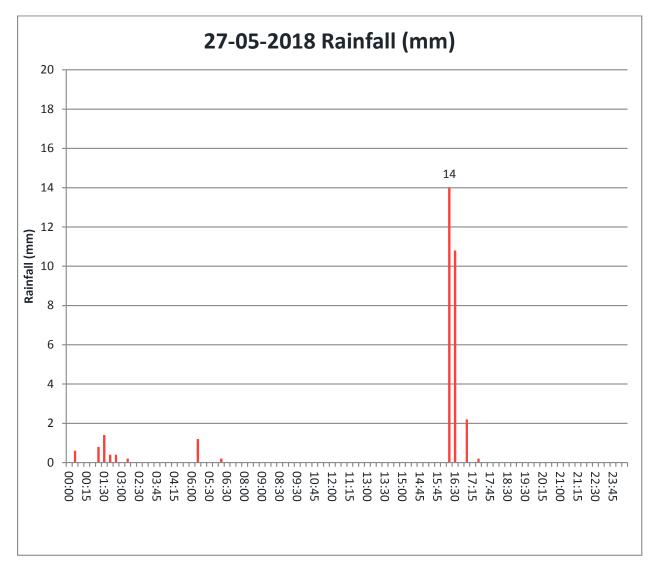

Appendix B


MAPS

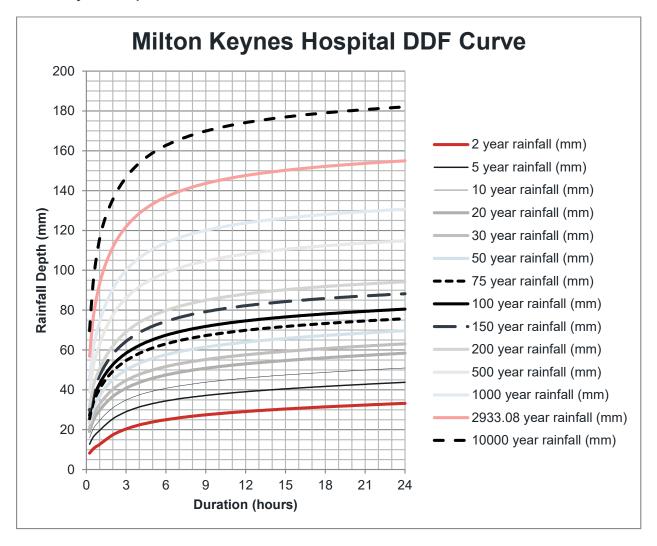







Appendix C

RAINFALL ANALYSIS



Summary of Recorded Rainfall at Environment Agency Gauge

Milton Keynes Hospital DDF Curve

	Da	Ľä	Re																		Se	l	Ma	Š	Ē											-	-	.	-	=		_			—		
ANN	867	653	986	746	806	855	848	743	796	814	840	541	828	863	916	780	99/	926	839	741	925	875	799	614	664	854	834	794	749	859	786	774	685	673	777	700	910	969	823	684	824	933	731	644	945	629	752
AUT	202	197	173	222	187	151	231	196	263	164	148	138	125	246	265	235	249	269	242	297	274	209	241	181	164	367	219	164	249	240	306	168	158	185	311	164	282	118	173	257	249	257	223	171	325	148	144
SUM	241	121	388	94	208	242	175	260	164	170	226	124	263	179	239	136	182	298	208	147	240	313	170	128	134	151	254	130	211	246	124	224	154	156	194	197	267	131	219	122	222	188	171	223	276	120	305
SPR	137	113	178	259	154	120	211	170	149	201	259	117	162	171	225	176	158	158	122	83	195	191	279	145	154	138	127	215	75	136	165	180	182	133	100	135	134	273	145	166	150	248	181	148	149	198	06
NIN	١	210	297	226	134	356	308	155	156	265	251	165	246	286	177	254	229	157	272	118	292	210	110	178	06	245	248	287	186	284	187	218	151	241	152	181	231	184	253	167	223	209	166	142	148	194	204
DEC	130	143	94	38	163	149	72	34	100	116	71	69	101	82	93	73	21	92	61	156	18	34	31	13	134	87	73	70	86	20	55	39	78	35	26	78	74	65	26	89	47	79	71	31	79	78	87
NOV	111	82	59	73	94	64	85	45	51	20	33	54	37	69	61	52	135	84	66	169	96	109	53	38	52	133	80	42	92	120	169	77	39	53	121	11	145	63	42	91	116	170	92	51	149	59	25
ОСТ	78	65	81	94	22	59	110	105	47	64	61	52	21	104	111	93	73	62	122	103	78	24	115	66	22	114	54	74	104	93	100	75	76	61	93	106	28	14	64	127	32	27	100	59	104	49	46
SEP	14	20	33	26	35	29	37	45	164	49	22	32	29	74	93	06	41	122	21	24	100	9/	74	43	55	120	84	48	54	27	38	16	43	71	96	48	108	42	29	40	102	09	28	62	72	40	73
AUG	106	20	166	36	52	75	74	148	20	69	34	94	118	75	84	2	62	118	79	22	8	118	23	21	28	46	27	28	84	29	12	103	79	92	73	29	134	13	105	45	100	119	06	78	120	19	142
JUL	70	10	105	28	92	136	50	51	06	7.1	124	18	114	88	26	63	61	83	42	53	116	96	95	53	43	19	130	69	79	128	06	98	59	37	64	22	9	29	36	61	79	39	28	83	74	21	94
NUC	65	9	118	29	64	32	51	62	25	29	89	11	30	16	58	2	59	26	87	38	40	100	25	54	33	87	97	34	49	52	22	35	16	55	57	75	72	50	62	16	43	30	52	62	82	80	69
MAY	56	35	89	09	42	90	99	89	09	29	70	42	29	61	128	96	78	34	30	48	56	88	146	48	34	26	26	72	09	32	43	59	92	76	36	72	63	22	99	63	51	85	89	52	75	106	19
APR	62	33	ω	91	29	31	39	44	55	52	120	32	75	63	67	57	58	53	32	28	74	92	83	59	63	92	48	70	4	26	65	40	36	32	54	38	44	67	49	64	65	09	54	99	13	30	44
MAR	20	46	103	108	83	29	106	58	33	120	70	43	58	46	30	24	22	71	61	7	65	∞	20	89	57	20	53	73	11	48	57	81	54	26	10	25	27	148	31	40	34	103	59	30	62	63	27
FEB	84	53	47	29	58	101	117	26	26	64	47	80	82	135	20	66	65	64	69	18	17	72	∞	92	11	80	62	115	26	44	65	78	27	38	40	65	82	48	41	33	128	88	19	46	69	50	20
JAN	72	28	107	103	38	92	42	22	99	102	68	98	98	20	74	62	06	72	137	39	118	22	69	22	99	31	100	66	06	143	71	98	98	126	77	61	71	61	147	37	28	74	68	25	49	65	106
Year	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956

Π				DEC	163	ç	2	П				2020		■2018	2017	2016	2013	2013 2012	= 2011 = 2010	
				Ş Q	170	. 7	Ξ	-	_	_		2010 2								
				OCT	148		4	-		\vee		2000	to 201							v DEC
		edet in the second		SEP	164	; -	4	-		_ 2	\geq		h, 2008			T		Ξ		NOV TO
asets		England Sast Anglia		AUG	166		» spur	3		4	\$	0 1990	al Sout						-	SEP OCT
ries/data	San A			JJ,	145		Annual Rainfall Summary. Midlands					1980	k Centr							AUG SE
summa	Scotland N	E SE		N N	167	,	2 Jumman			ع	<i>/</i> 5	1970	ו East ל		-		-		_	JUL A
nate/uk/	S 7 S. S.	S. S. Nales & Nales & England SW		MAY	146	; ;	nfall St	5		7		1960	d South	-			-			nor
ov.uk/clir		The state of		APR	141	;	ual Rai			V	\nearrow	1950	England							MAY
office.gc		44.		MAR	148	۱ :	Ann				>	1940	aries, I				+		-	APR
ww.met				EB	141 56	١	٥				>	1930	Summ							MAR
https://www.metoffice.gov.uk/climate/uk/summaries/datasets 06 July 2018			Midlands	JAN	149		71	-		<	<u> </u>	1920	Monthly Summaries, England South East & Central South, 2008 to 2018			 	-			FEB
-					E n	. 1	Ę			11111111	>	910		_		-				NAN
Data source Last Updated	Regions		Selected		Maximum			1200	100	0001	000	400		160	040	100	08 09	8 6 8	, o	

	_		_						_		_	_				_		_	_	_			_		_	_							_								_			_	_	_	_
ANA	781	919	675	1033	722	661	691	582	698	868	828	860	785	778	402	741	645	803	589	699	816	745	840	840	848	798	759	765	746	841	765	771	718	676	653	854	822	832	665	611	724	888	894	1018	794	925	613
AUT	232	222	161	376	187	164	235	105	243	218	277	265	151	236	166	149	146	276	145	311	162	110	159	240	268	237	193	301	139	187	249	153	167	180	184	269	235	258	199	182	175	281	229	399	229	272	147
SUM	252	293	118	256	166	171	203	161	209	238	147	243	178	189	234	157	215	212	119	74	204	198	137	261	126	244	92	124	241	193	227	234	141	126	172	249	184	121	52	133	249	202	195	150	181	203	147
SPR	104	133	162	116	138	157	185	189	174	195	221	188	248	159	156	193	160	82	167	117	151	142	286	133	272	150	271	122	181	225	176	172	182	69	132	181	175	183	122	130	125	223	198	241	219	157	140
N N	212	254	185	327	235	201	103	89	173	303	213	170	197	229	156	183	166	229	169	131	304	224	270	287	162	171	185	258	138	225	181	220	136	344	509	133	160	293	325	188	155	187	225	230	247	215	203
DEC	69	98	34	92	87	26	20	62	149	94	64	29	70	37	34	93	51	26	45	81	9/	148	137	25	78	9/	94	54	101	112	44	36	127	85	42	64	132	109	22	55	75	20	116	115	33	110	98
ă	9	∞	¥	တ	80	5	2	7	-	0	9	2		H	က	0	2	2	4	σ	7	7	1	5	_	7	ഗ		Ŧ	+	4	က	7	ω	4		7	7	7	5	7	_	÷	1	Н	Н	
Š	22	48	06	119	47	20	126	39	88	69	26	69	103	146	72	75	42	94	48	20	82	45	70	71	54	92	42	126	99	94	64	36	20	47	9/	113	90	75	65	92	88	9	47	142	46	116	70
OCT	54	70	29	148	80	26	48	42	25	105	141	70	14	43	69	30	46	71	27	120	47	14	22	108	68	72	63	73	45	76	132	89	82	90	54	73	75	70	38	65	59	140	78	144	116	126	48
SEP	123	104	4	108	09	88	61	24	132	45	88	126	34	47	25	44	58	112	71	142	29	51	32	61	126	70	88	103	28	17	53	47	36	42	55	83	100	113	26	23	28	82	104	114	29	30	29
AUG	109	77	29	101	89	108	78	43	53	97	29	28	76	98	108	36	49	8	43	31	95	61	81	91	23	82	27	62	85	114	09	71	45	37	21	118	44	55	8	89	82	46	98	55	75	63	16
JUL	66	104	52	66	64	50	47	50	91	68	47	110	58	59	41	55	66	69	61	25	16	9/	26	09	35	28	43	18	61	42	55	118	42	28	71	86	92	41	29	36	46	39	21	53	69	93	64
NUS	44	112	37	22	34	13	78	69	92	73	33	75	44	44	85	29	89	62	15	17	96	61	30	111	38	133	22	44	96	37	112	46	55	61	80	45	64	25	15	29	119	118	75	42	37	46	29
MAY	38	20	26	39	31	59	42	48	54	99	138	78	125	21	45	29	52	33	36	63	45	38	114	29	80	32	110	58	71	79	41	52	25	18	11	58	77	99	47	44	75	24	62	72	54	75	99
APR	7	21	80	34	96	99	63	54	53	92	35	62	55	80	55	53	64	10	29	16	48	42	63	16	63	24	107	6	90	82	60	34	06	31	62	55	82	56	21	47	27	116	69	137	94	45	41
MAR	58	42	57	43	11	32	81	87	29	33	49	48	89	22	56	72	21	39	73	88	58	62	109	88	129	93	54	55	49	65	75	98	67	20	59	68	17	71	53	38	23	83	67	32	71	38	33
FEB	74	111	9	65	22	31	21	26	15	111	75	36	65	72	29	64	36	82	27	34	141	57	54	83	53	33	30	51	28	17	45	53	67	110	48	33	10	29	98	99	88	17	42	2.2	81	116	28
JAN	52	75	93	128	87	83	27	23	79	43	44	02	74	87	06	85	36	92	98	52	82	06	68	29	52	09	62	113	56	107	24	123	34	106	75	59	98	92	130	45	12	92	114	37	51	99	65
Year	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003

Nuk.wspgroup.com/Central Data/Projectas/700480xx/70048076 - MKC S19 May 2018/02 VVPIE EP and flood risk/05 Analysis/04 Monthly Summaries/2018-07-06 Regional Rainfall Summary Midland. Asx

Regional Rainfall Summaries

AUT ANN	219 841	H	774 004	+					+++++						
SUM AI	268 2	170 2:	153 2:	353 1-	254 2:	249 2:	192 2	161		353 2					
SPR	171	147	225	176	207	129	106	74		215	215 166	215 166 196	215 166 196 155	215 166 196 155 200	215 166 196 155 200 139
NIN	224	131	120	277	241	161	191	157		185	185	185 247 347	185 247 347 189	185 247 347 189 289	185 247 347 189 289 149
DEC	44	56	100	78	55	74	28	93	•	138	138	138 89 73	138 89 73 120	138 89 73 120 34	138 89 73 120 34 88
NOV	47	99	83	64	9/	141	71	43		113	113 59	113 59 93	113 59 93 107	113 59 93 107	113 59 93 107 107 55
OCT	121	96	92	41	78	22	65	53		87	87 133	87 133 85	87 133 85 57	85 57 28	87 133 85 57 28 46
SEP	51	63	92	38	104	24	29	41		88	88 45	88 45 14	88 45 14 42	88 45 14 42 59	88 45 14 42 59 85
AUG	155	54	85	41	103	53	66	25		88	88 53	88 53 103	88 53 103 80	88 53 103 80 65	88 53 103 80 65
JUL	61	62	51	145	98	127	53	48		113	113 67	113 67 49	113 67 49 66	113 67 49 66 35	113 67 49 66 35 80
NOS	52	55	17	167	53	69	14	56		152	152 36	152 36 52	152 36 52 38	152 36 52 38 100	152 36 52 38 100 66
MAY	43	38	104	113	09	57	32	54		52	52 79	52 79 103	52 79 103 79	52 79 103 79 55	52 79 103 79 55
APR	87	62	44	6	63	40	25	8		141	141	141 22 46	141 22 46 23	141 22 46 23 63	141 22 46 23 63
MAR	41	48	77	55	84	32	20	12		23	23 65	23 65 47	23 65 47 52	23 65 47 52 83	23 65 47 52 83 67
FEB	41	45	42	85	37	41	56	72		29	29	29 46 109	29 46 109 41	29 46 109 41 70	29 46 109 41 70 56
JAN	98	42	22	92	126	99	61	25		63	63	63 64 149	63 64 149 75	63 64 149 75	63 64 149 75 99
ı.	4	5	9	7	8	6	0	_		~ !	2 8	01 W 4	2 8 4 3	2 8 4 3 9	5 5 5 7 7

Appendix D

PROPERTY LEVEL PROTECTION

PROPERTY LEVEL PROTECTION

Introduction

The purpose of this document is to make residents and building owners aware of a selection of Property Level Protection (PLP) measures which could be used to ameliorate the impacts of flooding within a building. This document is provided for information only, and does not constitute a recommendation for a particular product or approach.

It is important that anyone considering the use of PLP, seeks professional advice and ensures that the installation and materials used are warrantied and guaranteed.

PLP are the measures by which individual properties can be protected from the impacts of flooding. They generally comprise of a combination of flood resistance and flood resilience measures. Flood resistance involves keeping water out of a property using a variety of barriers for doors, windows and pipes. Flood resilience is the modification of a property such that it can withstand the effects of flooding. This can be achieved by using appropriate materials and furnishings, and by raising services above likely flood levels.

Types of products

A variety of products are available to protect all areas of potential water ingress into a property including doors and windows, brickwork and sewage systems.

Types of product include; anti flood doors, door barriers, anti-flood airbrick replacements or covers, non-return valves and sumps and pumps.

Available Products and Services

The Blue Pages (http://bluepages.org.uk/) is an independent flood directory set up by the National Flood Forum (https://nationalfloodforum.org.uk/). It provides a substantial list of the various products and services available in relation to protecting individual properties from flooding.

The most common methods of providing PLP are formed of a combination of the following devices:

- 1. Air Brick Protection http://bluepages.org.uk/listing-category/air-brick-protection/
- 2. Demountable Flood Barriers http://bluepages.org.uk/listing-category/demountable-flood-barriers/

A key issue with the Demountable Flood Barriers are the need to deploy the barriers before the flood event occurs, this can be difficult to achieve on private residents, particularly in areas at risk of surface (rainfall) water flooding. An alternative is to construct a permanent flood barrier at the rear door by raising the threshold, provided that it is suitably sealed and maintained to prevent the ingress of water to any sub floor void (if present). In general 'passive' flood defence systems such as this are preferable to a 'reactive' solutions (such as demountable flood barriers) as they don't require anybody to be present during a flood event to ensure that they are put in place.

GENERAL OBSERVATIONS

Following our work as an expert witness on cases relating to the failure of property level protection features, we recommend that a single supplier is used for the survey, design and installation of any protection measures residents and building owners choose to install. This would ensure that purchasers have a single point of contact should the product(s) fail during a flood event, offering a much better chance of recourse. We have observed difficulties of establishing responsibility for the failure of property level protection measures in the past when separate firms have supplied and installed various products at a single property.

If residents or building owners employ a firm to design the protection for a property then said firm should design their system to protect against a flood event of a particular magnitude (i.e. to protect against a flood which is likely to happen, on average, once every 100 years for example). This would be preferable to simply installing the protection up to or just above the level to which flooding has previously occurred, as a larger flood event could occur at any time. Specifying a magnitude of event also means purchasers have recourse should flooding occur during events of a lower magnitude.

WSP FWMA SECTION 19 REPORT
July 2018 Project No.: 70048076 | Our Ref No.: S19-2018-05
Milton Keynes **Borough Council**

Mountbatten House Basing View Basingstoke, Hampshire RG21 4HJ

wsp.com